Покажем на примере, что СДНФ не является экономной формой записи:
f(Х1, Х2)= Х1Х2
на основании полного склеивания по Х2 мы видим, что запись стала короче, т.к. содержит меньшее число связок и букв. Физически это означает, что устройство, которое реализует эквивалентную, но более простую функцию, будет иметь в своем составе меньшее количество оборудования, а следовательно, будет работать надежнее.
Итак, задача синтеза устройства должна быть дополнена задачей уменьшения оборудования в нем. С математической точки зрения это задача построения минимальной ФАЛ.
Под минимальной ФАЛ понимается такая форма, в которой содержится меньшее количество букв и членов, чем в ее исходной форме.
Речь идет именно о буквах, а не о переменных, так в функции:
f(Х1, Х2)= Х1Х2
Видно, что если какое-либо элементарное произведение входит в функцию, то при добавлении к нему новых сомножителей, полученное произведение так же будет входить в функцию.
Пример: если Х1Х2 входит в функцию от любого числа аргументов (>2), то в нее войдет, например, произведение Х1Х2Х3.
Это можно показать так:
f(Х1, Х2)= Х1Х2
Дадим ряд определений:
Например, Х1 Х2 Х3 – элементарное произведение, т.к. в него входят различные буквы Х1 Х2 Х3.
Конституентой единицы функции называют функцию, принимающую значение единицы только на одном наборе аргументов.
Обычно конституенты единицы выражают через произведение всех переменных, от которых зависит функция. СДНФ – дизъюнкция конституент единицы.
Ранг произведения – число букв, входящих в него.